Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Thomasson, J. Alex; Torres-Rua, Alfonso F. (Ed.)sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable.more » « less
An official website of the United States government
